
HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

1

HOL6500 - Finding And Solving Java
Deadlocks

Dr Heinz Kabutz

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

The Team

Kirk Pepperdine (Java Performance Tuning)

Jeff Genender (Apache Member, Savoir Technologies)

Henri Tremblay (EasyMock lead developer, OCTO Technology architect)

Ben Evans (Author, CEO jClarity)

Dario Laverde (Java architect, lecturer, author)

Nathan Reynolds (Exalogic Performance Architect)

Martijn Verburg (CTO jClarity, Diabolical Developer)

Heinz Kabutz (The Java Specialists' Newsletter)

2

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

How We Help Java

Support open source software

Consult and train Java developers
–We only do extreme courses

Community leaders

JCP members and spec leads

Involved in OpenJDK

Kirk, Jeff, Heinz are
Java Champions

3

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

4

1: Introduction

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

5

Structure Of Hands-On Lab

Three short lectures, each followed by a short lab
–https://github.com/kabutz/DeadlockLabJavaOne2012.git

We only have two hours to cover a lot, so let's go!

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

6

Questions

Please please please please ask questions!

Interrupt us at any time
–This lab is on deadlocks, we need to keep focused in available time

The only stupid questions are those you do not ask
–Once you’ve asked them, they are not stupid anymore

The more you ask, the more we all learn

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

HOL6500 - Finding And Solving Java
Deadlocks

Avoiding Liveness Hazards

7

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

8

10: Avoiding Liveness Hazards

Fixing safety problems can cause liveness problems
–Don't indiscriminately sprinkle "synchronized" into your code

Liveness hazards can happen through
–Lock-ordering deadlocks

• Typically when you lock two locks in different orders
• Requires global analysis to make sure your order is consistent

–Lesson: only ever hold a single lock per thread!

–Resource deadlocks
• This can happen with bounded queues or similar mechanisms meant to bound
resource consumption

A thread deadlocked in BLOCKED state can never recover

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Lab 1: Deadlock Resolution By
Global Ordering

Avoiding Liveness Hazards

9

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

10

Lab 1: Deadlock Resolution By Global Ordering

Classic problem is that of the "dining philosophers"
–We changed that to the "drinking philosophers"

• That is where the word "symposium" comes from
–sym - together, such as "symphony"
–poto - drink

• Ancient Greek philosophers used to get together to drink & think

In our example, a philosopher needs two glasses to drink
–First he takes the right one, then the left one

–When he finishes drinking, he returns them and carries on thinking

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Drinking Philosophers In Limbo

The standard rule is that every philosopher first picks up the right cup,
then the left
–If all of the philosophers want to drink and they all pick up the right cup, then they all are

holding one cup but cannot get the left cup

11

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

A Deadlock Can Easily Happen With This Design

12

1

25

4 3

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 5 Wants To Drink, Takes Right Cup

13

1

25

4 3

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 1 Wants To Drink, Takes Right Cup

14

1

25

4 3

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 2 Wants To Drink, Takes Right Cup

15

1

25

4 3

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 3 Wants To Drink, Takes Right Cup

16

1

25

4 3

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 4 Wants To Drink, Takes Right Cup

17

1

25

4 3

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Deadlock!

All the philosophers are
waiting for their left
cups, but they will
never become
available

18

1

25

4 3

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Global Order With Boozing Philosophers

If all philosophers hold one cup, we deadlock
–Our solution must prevent all philosophers from holding one cup

We can solve the deadlock with the "dining philosophers" by requiring
that locks are always acquired in a set order
–For example, we can make a rule that philosophers always first take the cup with the

largest number
• If it is not available, we block until it becomes available

–And return the cup with the lowest number first

19

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Global Lock Ordering

We start with all the
philosophers thinking

20

1

25

4 3
4

3

21

5

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 5 Takes Cup 5

Cup 5 has higher number
–Remember our rule!

21

1

25

4 3
4

3

2

5

1

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 1 Takes Cup 2

Must take the cup with
the higher number
first
–In this case

cup 2

22

1

25

4 3
4

3

2

5

1

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 2 Takes Cup 3

23

1

25

4 3
4

3

2

5

1

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 3 Takes Cup 4

Note that philosopher 4
is prevented from
holding one cup

24

1

25

4 34

3

2

5

1

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 1 Takes Cup 1 - Drinking

25

1

25

4 34

3

2

5

1

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 1 Returns Cup 1

Cups are returned in the
opposite order to what
they are acquired

26

1

25

4 34

3

2

5

1

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 5 Takes Cup 1 - Drinking

27

1

25

4 34

3

2

5

1

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 5 Returns Cup 1

28

1

25

4 34

3

2

5

1

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 1 Returns Cup 2

29

1

25

4 34

3

2

5

1

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 2 Takes Cup 2 - Drinking

30

1

25

4 34

3

2

5

1

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 5 Returns Cup 5

31

1

25

4 34

3

2

5

1

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 4 Takes Cup 5

32

1

25

4 34

3

2

5

1

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 2 Returns Cup 2

33

1

25

4 34

2

5

1

3

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 2 Returns Cup 3

34

1

25

4 4

5

1 2

3

3

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 3 Takes Cup 3 - Drinking

35

1

25

4 34

3

2

5

1

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 3 Returns Cup 3

36

1

25

4 3

2

5

1

3

4

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 3 Returns Cup 4

37

1

25

3

2

5

1

4

4

3

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 4 Takes Cup 4 - Drinking

38

1

25

4 34

3

2

5

1

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 4 Returns Cup 4

39

1

25

4 3

3

21

4
5

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 4 Returns Cup 5

Deadlock free!

40

1

25

4 3
4

3

2

5

1

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Deadlock Is Avoided

Impossible for all philosophers to hold one cup

41

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Capturing A Stack Trace

JVisualVM is a tool for monitoring what the JVM is doing
–Found in the JDK/bin directory

–Double-click on application

42

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Click On "Threads" Tab

Click on "Thread Dump" button

43

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Stack Trace Shows What Threads Are Doing

44

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Stack Trace Shows What Threads Are Doing

44

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

It Can Even Detect A Java-level Deadlock

45

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

It Can Even Detect A Java-level Deadlock

45

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

46

Lab 1 Exercise

Deadlock resolution by global ordering

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Lab1 Exercise Lab1/readme.txt
–Go to DeadlockLabJavaOne2012/lab1 directory

–Run Main class to trigger deadlock (run.bat)
• You might need a few runs

–Capture a stack trace with JVisualVM

–Verify the deadlock involves the left and right locks

–Now it is time to look at the source code
• Source code is at src/main/java/eu/javaspecialists/deadlock/lab1

–Define a global ordering for the locks that would prevent deadlock
• We are synchronizing on the Krasi objects
• Define a global ordering for Krasi objects by implementing Comparable and providing
a unique number to sort on (Krasi.java)

• Change the code to use the global ordering (Thinker.java)

–Verify that the deadlock has now disappeared

47

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Lab1 Exercise Solution Explanation

Goal: Prevent all philosophers from holding a single cup

48

1

25

4 3

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Lab1 Exercise Solution Explanation

Goal: Prevent all philosophers from holding a single cup

The set of first cups is 2,3,4,5
–This means that at most four philosophers can hold a single cup!

49

Thinker Cup 1
right

Cup 2
left

1 1 2

2 2 3

3 3 4

4 4 5

5 5 1

Thinker Cup 1
big

Cup 2
small

1 2 1

2 3 2

3 4 3

4 5 4

5 5 1

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Lab 2: Deadlock Resolution By
TryLock

Avoiding Liveness Hazards

50

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

51

Lab 2: Deadlock Resolution By TryLock

Same problem as in Lab 1

But our solution will be different

Instead of a global order on the locks
–We lock the first lock

–We then try to lock the second lock
• If we can lock it, we start drinking
• If we cannot, we back out completely and try again

–What about starvation or livelock?

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Lock And ReentrantLock

The Lock interface offers different ways of locking:
–Unconditional, polled, timed and interruptible

Lock implementations must have same memory-visibility semantics as
intrinsic locks (synchronized)

52

public interface Lock {
 void lock();
 void lockInterruptibly() throws InterruptedException;
 boolean tryLock();
 boolean tryLock(long timeout, TimeUnit unit)
 throws InterruptedException;
 void unlock();
 Condition newCondition();
}

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

ReentrantLock Implementation

Like synchronized, it offers reentrant locking semantics

Also, we can interrupt threads that are waiting for locks
–Actually, the ReentrantLock never causes the thread to be BLOCKED, but always

WAITING

–If we try to acquire a lock unconditionally, interrupting the thread will simply go back
into the WAITING state
• Once the lock has been granted, the thread interrupts itself

53

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Using The Explicit Lock

We have to call unlock() in a finally block
–Every time, without exception

–There are FindBugs detectors that will look for forgotten "unlocks"

54

private final Lock lock = new ReentrantLock();
public void update() {
 lock.lock(); // this should be before try
 try {
 // update object state
 // catch exceptions and restore
 // invariants if necessary
 } finally {
 lock.unlock();
 }
}

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Polled Lock Acquisition

Instead of unconditional lock, we can tryLock()

55

if (lock.tryLock()) {
 try {
 balance = balance + amount;
 } finally {
 lock.unlock();
 }
} else {
 // alternative path
}

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Using Try-Lock To Avoid Deadlocks

Deadlocks happen when we lock multiple locks in different orders

We can avoid this by using tryLock()
–If we do not get lock, sleep for a random time and then try again

–Must release all held locks, or our deadlocks become livelocks

This is possible with synchronized, see my newsletter
–http://www.javaspecialists.eu/archive/Issue194.html

56

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

public void drink() {
 while (true) {
 right.lock();
 try {
 if (left.tryLock()) {
 try {
 // now we can finally drink and then return
 return;
 } finally {
 left.unlock();
 }
 }
 } finally {
 right.unlock();
 }
 // sleep for a random time
 }
}

57

Using TryLock() To Avoid Deadlocks

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Deadlock Is Prevented In This Design

58

1

25

4 3

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 5 Wants To Drink, Takes Right Cup

59

1

25

4 3

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 1 Wants To Drink, Takes Right Cup

60

1

25

4 3

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 2 Wants To Drink, Takes Right Cup

61

1

25

4 3

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 3 Wants To Drink, Takes Right Cup

62

1

25

4 3

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 4 Wants To Drink, Takes Right Cup

63

1

25

4 3

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 4 Tries To Lock Left, Not Available

64

1

25

4 3

X

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Philosopher 4 Unlocks Right Again

Now Philosopher 3 can
drink

65

1

25

4 3

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

66

Lab 2 Exercise

Deadlock resolution by tryLock

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Lab2 Exercise Lab2/readme.txt
–Run Main class to trigger deadlock

• You might need a few runs

–Capture a stack trace with JVisualVM

–Verify the deadlock involves the left and right locks

–Use Lock.tryLock() to avoid blocking on the inner lock (forever)
• lock the right
• tryLock the left

–if success, then drink and unlock both
–otherwise, unlock right and retry

• Change the Thinker.java file

–Verify that the deadlock has now disappeared

67

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Lab2 Exercise Solution Explanation

Goal: Prevent all philosophers from forever blocking on the second cup
–A philosopher should not die of thirst

• We need to avoid livelocks
• lock/tryLock vs. tryLock/tryLock

68

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Lab 3: Resource Deadlock

Avoiding Liveness Hazards

69

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Lab 3: Resource Deadlock

Problem: threads are blocked waiting for a finite resource that never
becomes available

Examples:
–Resources not being released after use

• Running out of threads
• Java Semaphores not being released

–JDBC transactions getting stuck

–Bounded queues or thread pools getting jammed up

Challenge:
–Does not show up as a Java thread deadlock

–Problem thread could be in any state: RUNNING, WAITING, BLOCKED

70

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

How To Solve Resource Deadlocks

Approach: If you can reproduce the resource deadlock
–Take a thread snapshot shortly before the deadlock

–Take another snapshot after the deadlock

–Compare the two snapshots

Approach: If you are already deadlocked
–Take a few thread snapshots and look for threads that do not move

It is useful to identify the resource that is being exhausted
– A good trick is via phantom references (beyond scope of this lab)

71

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Resource Deadlocks

We can also cause deadlocks waiting for resources

For example, say you have two DB connection pools
–Some tasks might require connections to both databases

–Thus thread A might hold semaphore for D1 and wait for D2, whereas thread B might
hold semaphore for D2 and be waiting for D1

Thread dump and ThreadMXBean does not show this as a deadlock!

72

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Our DatabasePool - Connect() And Disconnect()
public class DatabasePool {
 private final Semaphore connections;
 public DatabasePool(int connections) {
 this.connections = new Semaphore(connections);
 }

 public void connect() {
 connections.acquireUninterruptibly();
 System.out.println("DatabasePool.connect");
 }

 public void disconnect() {
 System.out.println("DatabasePool.disconnect");
 connections.release();
 }
}

73

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

ThreadMXBean Does Not Detect This Deadlock
DatabasePool.connect
DatabasePool.connect

74

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

ThreadMXBean Does Not Detect This Deadlock
DatabasePool.connect
DatabasePool.connect

74

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Stack Trace Gives A Vector Into The Code

public class DatabasePool {
 // ...

 public void connect() {
 connections.acquireUninterruptibly(); // line 12
 System.out.println("DatabasePool.connect");
 }
}

75

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

76

Lab 3 Exercise

Resource Deadlock

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Lab3 Exercise Lab3/readme.txt
–Start our modified Java2Demo

–Connect JVisualVM
and dump all threads

–Use Java2Demo for a while
until it deadlocks

–Get another thread dump and
compare to the first one
• This should show you where
the problem is inside your code

–Fix the problem and verify that it has been solved
• Hint: Your colleagues probably write code like this, but you shouldn't

77

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Lab3 Exercise Solution Explanation

Goal: Ensure that resources are released after use

Diff between the two thread dumps using jps and jstack

–Most likely the fault will be in one of our classes, rather than the JDK

78

< at java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.await(AbstractQueuedSynchronizer.java:2043)
< at java.awt.EventQueue.getNextEvent(EventQueue.java:531)
< at java.awt.EventDispatchThread.pumpOneEventForFilters(EventDispatchThread.java:213)

> at java.util.concurrent.locks.AbstractQueuedSynchronizer.parkAndCheckInterrupt(AbstractQueuedSynchronizer.java:834)
> at java.util.concurrent.locks.AbstractQueuedSynchronizer.doAcquireSharedInterruptibly(AbstractQueuedSynchronizer.java:994)
> at java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireSharedInterruptibly(AbstractQueuedSynchronizer.java:1303)
> at java.util.concurrent.Semaphore.acquire(Semaphore.java:317)
> at eu.javaspecialists.deadlock.lab3.java2d.MemoryManager.gc(MemoryManager.java:56)
> at eu.javaspecialists.deadlock.lab3.java2d.MemoryMonitor$Surface.paint(MemoryMonitor.java:153)

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

What Is Wrong With This Code?
/**
 * Only allow a maximum of 30 threads to call System.gc() at a time.
 */
public class MemoryManager extends Semaphore {
 private static final int MAXIMUM_NUMBER_OF_CONCURRENT_GC_CALLS = 30;

 public MemoryManager() {
 super(MAXIMUM_NUMBER_OF_CONCURRENT_GC_CALLS);
 }

 public void gc() {
 try {
 acquire();
 try {
 System.gc();
 } finally {
 System.out.println("System.gc() called");
 release();
 }
 } catch (Exception ex) {
 // ignore the InterruptedException
 }
 }
}

79

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

What Is Wrong With This Code?
/**
 * Only allow a maximum of 30 threads to call System.gc() at a time.
 */
public class MemoryManager extends Semaphore {
 private static final int MAXIMUM_NUMBER_OF_CONCURRENT_GC_CALLS = 30;

 public MemoryManager() {
 super(MAXIMUM_NUMBER_OF_CONCURRENT_GC_CALLS);
 }

 public void gc() {
 try {
 acquire();
 try {
 System.gc();
 } finally {
 System.out.println("System.gc() called");
 release();
 }
 } catch (Exception ex) {
 // ignore the InterruptedException
 }
 }
}

79

Calling System.gc() is baddd (but not the problem)

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

What Is Wrong With This Code?
/**
 * Only allow a maximum of 30 threads to call System.gc() at a time.
 */
public class MemoryManager extends Semaphore {
 private static final int MAXIMUM_NUMBER_OF_CONCURRENT_GC_CALLS = 30;

 public MemoryManager() {
 super(MAXIMUM_NUMBER_OF_CONCURRENT_GC_CALLS);
 }

 public void gc() {
 try {
 acquire();
 try {
 System.gc();
 } finally {
 System.out.println("System.gc() called");
 release();
 }
 } catch (Exception ex) {
 // ignore the InterruptedException
 }
 }
}

79

Calling System.gc() is baddd (but not the problem)

Empty catch block hides problem

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Wrap Up

Avoiding Liveness Hazards

80

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

Conclusion On Deadlocks

Concurrency is difficult, but there are tools and techniques that we can
use to solve problems

These are just a few that we use

For more information, have a look at
–The Java Specialists' Newsletter - http://www.javaspecialists.eu

We have helped a lot of companies by training their Java programmers
–Java Concurrency

–Java Performance Tuning

–Java Design Patterns

–Advanced Java Techniques (Java NIO, threading, data structs, etc.

81

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

And One More Thing

We have prepared a fourth lab for you to do at home
–Either take it along with a memory stick or get it from

• https://github.com/kabutz/DeadlockLabJavaOne2012.git

–Send questions and comments to heinz@kabutz.net

82

HOL6500 - Finding and Solving Java Deadlocks
©

 2012 H
einz K

abutz, A
ll R

ights R
eserved

83

Questions?

heinz@kabutz.net

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

