1C Selvmg Java
Deadlocks

Dr Heinz Kabutz

pansasay syby Iy ‘zInge)y] zuleH Z10Z O

.Javaggeg gnllsts eu

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

alists.eu

Javasg

HOL6500 - Finding and Solving Java Deadlocks

The Team

®Kirk Pepperdine (Java Performance Tuning)

@ Jeff Genender (Apache Member, Savoir Technologies)

®Henri Tremblay (EasyMock lead developer, OCTO Technology architect)
®Ben Evans (Author, CEO jClarity)

®Dario Laverde (Java architect, lecturer, author)

®Nathan Reynolds (Exalogic Performance Architect)

®Martijn Verburg (CTO jClarity, Diabolical Developer)

pansasay sIbIY |1V ‘ZIngey] zuisH Z10Z ©

®Heinz Kabutz (The Java Specialists' Newsletter)

Javaspecialists.eu

| ®lnvolved in OpenJDK

HOL6500 - Finding and Solving Java Deadlocks

How We Help Java

®Support open source software

®Consult and train Java developers

—We only do extreme courses

® Community leaders

®JCP members and spec leads

O Kirk, Jeff, Heinz are
Java Champions

paalsasay sIybiy |1y ‘Zngey] zuisH Z1L0Z O

= Java

Champions

.Javqggce'glaqu‘llﬂg.eu

pansasay syby v ‘zanqey zuieH Z10Z O

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

HOLG6500 - Finding and Solving Java Deadlocks

Structure Of Hands-On Lab

®Three short lectures, each followed by a short lab
- | —https:/Ilgithub.com/kabutz/DeadlockLabJavaOne2012.git

®We only have two hours to cover a lot, so let's go!

paalasay sybiy |1y ‘Zzanqey] zuisH ZL0Z ©

Javaspecialists.eu

HOL6500 - Finding and Solving Java Deadlocks

Questions

®Please please please please ask questions!

®Interrupt us at any time

—This lab is on deadlocks, we need to keep focused in available time

® The only stupid questions are those you do not ask

—Once you’ve asked them, they are not stupid anymore

®The more you ask, the more we all learn

paAsasay siybiy |1y ‘Zanqey] zuisH Z1L0Z @

Jovosd‘q_coonm.ou

_— Avoiding Liveness Hazards

1C Selvmg Java
Deadlocks

- 20

pansasay syby Iy ‘zInge)y] zuleH Z10Z O

.Javaggeg gnllsts eu

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

HOL6500 - Finding and Solving Java Deadlocks

10: Avoiding Liveness Hazards

®Fixing safety problems can cause liveness problems

—Don't indiscriminately sprinkle "synchronized” into your code

®Liveness hazards can happen through

—Lock-ordering deadlocks
e Typically when you lock two locks in different orders
* Requires global analysis to make sure your order is consistent

alists.eu

—Lesson: only ever hold a single lock per thread!

—Resource deadlocks

* This can happen with bounded queues or similar mechanisms meant to bound
resource consumption

pansasay sIbIY |1V ‘ZIngey] zuisH Z10Z ©

Javasg

® A thread deadlocked in BLOCKED state can never recover

! /J.'t
;) L ?‘ 5 ks 9

S8 Wy p
—— S,
. - 5} v .
’ - - g\.

e 4
B

se‘rutlon By
obal Orderlng

-
.
L]

‘:r-_ .
I AP, W

.}'

_— Avoiding Liveness Hazards

pansasay syby Iy ‘zInge)y] zuleH Z10Z O

.Javaggeg gnllsts eu

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

cialists.eu

Java

HOL6500 - Finding and Solving Java Deadlocks

Lab 1: Deadlock Resolution By Global Ordering

®Classic problem is that of the "dining philosophers”

—We changed that to the "drinking philosophers”
* That is where the word "symposium"” comes from
—sym - together, such as "symphony"
—poto - drink
 Ancient Greek philosophers used to get together to drink & think

®In our example, a philosopher needs two glasses to drink

—First he takes the right one, then the left one

—When he finishes drinking, he returns them and carries on thinking

paAlasay siybiy 1Y ‘Zinqey] zuisH Z1L0Z @

HOLG6500 - Finding and Solving Java Deadlocks

Drinking Philosophers In Limbo

®The standard rule is that every philosopher first picks up the right cup,
then the left

—If all of the philosophers want to drink and they all pick up the right cup, then they all are
holding one cup but cannot get the left cup

paAsasay sIybIy |1y ‘Zangey] zuieH Z1L0Z O

Jovosb"qciallsts.ou

HOLG6500 - Finding and Solving Java Deadlocks

A Deadlock Can Easily Happen With This Design

O

&) &)

()

pansasay sIYbIY IV ‘ZIngey] zuisH Z1L0Z ©

Javaspecialists.eu

(&)

HOLG6500 - Finding and Solving Java Deadlocks

Philosopher 5 Wants To Drink, Takes Right Cup

)

&)
(2)

.'

(&)

pansasay sIYbIY IV ‘ZIngey] zuisH Z1L0Z ©

Javaspecialists.eu

HOLG6500 - Finding and Solving Java Deadlocks

Philosopher 1 Wants To Drink, Takes Right Cup

&)
()

.'

(&)

pansasay sIYbIY IV ‘ZIngey] zuisH Z1L0Z ©

Javaspecialists.eu

HOLG6500 - Finding and Solving Java Deadlocks

Philosopher 2 Wants To Drink, Takes Right Cup

pansasay sIYbIY IV ‘ZIngey] zuisH Z1L0Z ©

Javaspecialists.eu

HOLG6500 - Finding and Solving Java Deadlocks

Philosopher 3 Wants To Drink, Takes Right Cup

pansasay sIYbIY IV ‘ZIngey] zuisH Z1L0Z ©

Javaspecialists.eu

HOLG6500 - Finding and Solving Java Deadlocks

Philosopher 4 Wants To Drink, Takes Right Cup

pansasay sIYbIY IV ‘ZIngey] zuisH Z1L0Z ©

Javaspecialists.eu

HOLG6500 - Finding and Solving Java Deadlocks

Deadlock!

®All the philosophers are
~ | waiting for their left
cups, but they will
never become
available

pansasay sybiy |1y ‘Zinge)y zuisH Z10Z @

Javaspecialists.eu

HOL6500 - Finding and Solving Java Deadlocks

Global Order With Boozing Philosophers

®If all philosophers hold one cup, we deadlock

—Our solution must prevent all philosophers from holding one cup

®We can solve the deadlock with the "dining philosophers™ by requiring
that locks are always acquired in a set order

—For example, we can make a rule that philosophers always first take the cup with the
largest number

e If it is not available, we block until it becomes available

cialists.eu

—And return the cup with the lowest number first

paAlasay siybiy 1Y ‘Zinqey] zuisH Z1L0Z @

Java

HOLG6500 - Finding and Solving Java Deadlocks

Global Lock Ordering

®We start with all the
| philosophers thinking @

&) &)

(2)

pansasay sybiy |1y ‘Zinge)y zuisH Z10Z @

Javaspecialists.eu

(&)

HOLG6500 - Finding and Solving Java Deadlocks

Philosopher 5 Takes Cup 5

®Cup 5 has higher number
: —Remember our rule! @

pansasay sybiy |y ‘Zznqey] zuisH Z10Z @

Javaspecialists.eu

HOLG6500 - Finding and Solving Java Deadlocks

Philosopher 1 Takes Cup 2

®Must take the cup with
| the higher number o
first

—In this case
cup 2

&)
(2)

(&)

pansasay sybiy |1y ‘Zinge)y zuisH Z10Z @

Javaspecialists.eu

HOLG6500 - Finding and Solving Java Deadlocks

Philosopher 2 Takes Cup 3

@
5
(2)

.'

(&)

pansasay sIYbIY IV ‘ZIngey] zuisH Z1L0Z ©

Javaspecialists.eu

HOLG6500 - Finding and Solving Java Deadlocks

Philosopher 3 Takes Cup 4

®Note that philosopher 4
is prevented from
holding one cup

I |

(&)

pansasay sybiy |y ‘Zznqey] zuisH Z10Z @

Javaspecialists.eu

HOLG6500 - Finding and Solving Java Deadlocks

Philosopher 1 Takes Cup 1 - Drinking

pansasay sIYbIY IV ‘ZIngey] zuisH Z1L0Z ©

Javaspecialists.eu

HOLG6500 - Finding and Solving Java Deadlocks

Philosopher 1 Returns Cup 1

®Cups are returned in the
opposite order to what
they are acquired

(&)

pansasay sybiy |1y ‘Zinge)y zuisH Z10Z @

Javaspecialists.eu

HOLG6500 - Finding and Solving Java Deadlocks

Philosopher 5 Takes Cup 1 - Drinking

pansasay sIYbIY IV ‘ZIngey] zuisH Z1L0Z ©

Javaspecialists.eu

HOLG6500 - Finding and Solving Java Deadlocks

Philosopher 5 Returns Cup 1

pansasay sIYbIY IV ‘ZIngey] zuisH Z1L0Z ©

Javaspecialists.eu

HOLG6500 - Finding and Solving Java Deadlocks

Philosopher 1 Returns Cup 2

pansasay sIYbIY IV ‘ZIngey] zuisH Z1L0Z ©

Javaspecialists.eu

HOLG6500 - Finding and Solving Java Deadlocks

Philosopher 2 Takes Cup 2 - Drinking

pansasay sIYbIY IV ‘ZIngey] zuisH Z1L0Z ©

Javaspecialists.eu

HOLG6500 - Finding and Solving Java Deadlocks

Philosopher 5 Returns Cup 5

O,

&)

pansasay sybiy |y ‘Zznqey] zuisH Z10Z @

Javaspecialists.eu

(&)

HOLG6500 - Finding and Solving Java Deadlocks

Philosopher 4 Takes Cup 5

)

&)

pansasay sIYbIY IV ‘ZIngey] zuisH Z1L0Z ©

Javaspecialists.eu

HOLG6500 - Finding and Solving Java Deadlocks

Philosopher 2 Returns Cup 2

)
&)

pansasay sIYbIY IV ‘ZIngey] zuisH Z1L0Z ©

Javaspecialists.eu

HOLG6500 - Finding and Solving Java Deadlocks

Philosopher 2 Returns Cup 3

)
&)

&)

pansasay sIYbIY IV ‘ZIngey] zuisH Z1L0Z ©

Javaspecialists.eu

HOLG6500 - Finding and Solving Java Deadlocks

Philosopher 3 Takes Cup 3 - Drinking

O,

&)

&)

pansasay sybiy |y ‘Zznqey] zuisH Z10Z @

Javaspecialists.eu

HOLG6500 - Finding and Solving Java Deadlocks

Philosopher 3 Returns Cup 3

)
&)

&)

pansasay sIYbIY IV ‘ZIngey] zuisH Z1L0Z ©

Javaspecialists.eu

HOLG6500 - Finding and Solving Java Deadlocks

Philosopher 3 Returns Cup 4

)

&) &)
®

@ @

pansasay sIYbIY IV ‘ZIngey] zuisH Z1L0Z ©

Javaspecialists.eu

HOLG6500 - Finding and Solving Java Deadlocks

Philosopher 4 Takes Cup 4 - Drinking

O,

&)

&)
()

pansasay sybiy |y ‘Zznqey] zuisH Z10Z @

Javaspecialists.eu

HOLG6500 - Finding and Solving Java Deadlocks

Philosopher 4 Returns Cup 4

()

&) &)
®

@ @

pansasay sIYbIY IV ‘ZIngey] zuisH Z1L0Z ©

Javaspecialists.eu

HOLG6500 - Finding and Solving Java Deadlocks

Philosopher 4 Returns Cup 5

®Deadlock free! @

&) O,

()

pansasay sybiy |y ‘Zznqey] zuisH Z10Z @

Javaspecialists.eu

(&)

HOLG6500 - Finding and Solving Java Deadlocks

Deadlock Is Avoided

®Impossible for all philosophers to hold one cup

pansasay sybiy |1y ‘Zinge)y zuisH Z10Z @

Javaspecialists.eu

HOL6500 - Finding and Solving Java Deadlocks

Capturing A Stack Trace

®JVisualVM is a tool for monitoring what the JVM is doing
| —Found in the JDK/bin directory

—Double-click on application

BH Java VisualVm
File Applications VYiew Tools Window Help

1“1 B3R RE

'SAppIications 4 x | Start Page x

=18 Local
¥ visualvM

Java™ VisualVM

VisualVM Home Java SE Reference at a Glance
Getting Started with VisualVM Troubleshooting Guide for Java SE 6
VisualVM Troubleshooting Guide Troubleshooting Java™ 2 SE 5.0

Getting Started Extending VisualVM Monitoring and Managing Java SE 6

paalasay sybiy |1y ‘Zzanqey] zuisH ZL0Z ©

Jovoquclollsts.ou

ORACLE’

Show On Startup

HOL6500 - Finding and Solving Java Deadlocks

Click On "Threads" Tab

®Click on "Thread Dump" button

— £8 Java VisualVM
File Applications VYiew Tools Window Help

=5 W W

: Applications aQ x| Start Page x I é com.intellij.rt.execution. application. AppMain (pid 256) x |II| E] @
8@] L ch:'l | Overview || Monitor [= Threads] £ Sampler ” $9) Profiler|
el d YisualvM

g <Unknown Applic | ' com.intellij.rt.execution.application.AppMain (pid 256)

Q org.jetbrains.ide:

Threads Threads visualizatior
Live threads: 15 | Thread Dump
Daemon threads: 9

| Timeline | Table | Details
@ Q@ @ show: al Threads
|

Threads il L] | '0:30l

I
@ IMX server connection timeout 18 |_
O RMI Scheduler(0)

@ RMI TCP Connection(1)-192,168...
@ RMI TCP Accept-0
O pool-1-thread-5

O pool-1-thread-4
O pool-1-thread-3
O pool-1-thread-2

paalasay sybiy |1y ‘Zzanqey] zuisH ZL0Z ©

Jovoquclollsts.ou

i |3

[Running 3 Sleeping [Wait [Monitor

HOL6500 - Finding and Solving Java Deadlocks

Stack Trace Shows What Threads Are Doing

¥% Java VisualVi M =3
File Applications Yiew Tools Window Help

=5 850

: ppplications Q@ x| StartPage x é com.intellij.rt.execution, application. AppMain (pid 256) x <][=])(D
Ej@ ET: - | Overview || Monitor || — | Threads “ £33 Sampler ” ® Profiler[== [threaddump] 12:04:37 PM "}
: > " isua

< com.intellij.rt.execution.application.AppMain (pid 256)
| Thread Dump

[[threaddump)

e & org.jetbrains.ide:
: Z01Z2-09-14 15:04:37
ﬁ Remote

Full thread dunp Java HotSpot (THM) Client VM (ZZ.0-bl0 mixed mode, sharing):

w/

Snapshots

"PMI TCP Commection(Z)-192.168.187.130" daemon prio=6 tid=0x0Zb4a800 nid=0xcel
jJava. lang. Thread. State: RUNNAELE
at java.net.SocketInputStream. socketReadl(Native Method)
at java.net.SocketInputStream.read(SocketInputStream. java:150)
at java.net.SocketInputStream.read(SocketInputStream. java:lZl)
at jJava.io.BufferedInputStream. fill(BufferedInputStream. java:Z35)
at java.io.BufferedInputStream.read(BufferedInputStrean. java:zZ54)
- locked <0xZ25565818> (a java.io.BufferedInputStream)
at jJava.io.FilterInputStream.read(FilterInputStream. java:83)
at sun.rni.transport.tep. TCPTransport handleMessages (TCPTransport. java:
at sun.rmi.transport._ tcocp. TCPTransportiConnectionHandler. run0 (TCPTranspo
at sun.rni.transport.tecp. TCPTransportiConnectionHandler . run(TCPTranspor

at java.util.concurrent. ThreadPoolExecutor. runllorker (ThreadPoolExecutor

paasasay sybiy |1y ‘Zange)] zuisH Z10Z O

Javaspecialists.eu

at java.util.concurrent. ThreadPoolExecutorilorker. run(ThreadPoolExecuto

at java.lang.Thread.run(Thread. java:7ZZ)

Locked ownmable synchronizers:

- ZMwZEEAREQ3N=>= (fa Aawa ntil croavenrrent. ThreadPoan]l Everntnrsilinrkear) —

| ' 3 ;ﬁj L1 jt

W W R

tions @ x | Start Page x I é com.inktellij.rt.execution, application. AppMain (pid 256) x 4]
"f: - Overview Monitor | (=] Threads | &2, Sampler | (%) Profiler | 5= [threaddump] 12:04:37 PM x]
" Visua —

5 ZUnknown appli

| [threaddump
5 org.jetbrains.ide

emote
napshots

-~ com.intellij.rt.execution.application.AppMain (pid 256)

Thread Dump

Z01Z2-03-14 15:04:37

Full thread dunp Java HotSpot (THM) Client VM (Z2Z2.0-bl0 mixed mode, sharing):

"BMI TCP Commection(Z)-13Z.1le3.137.130"

Java. lang. Thread. State: RUNNAELE

at
at
at
at
at
at
ac
at
at

daemon prio=6 tCid=0x0Zb4af00 nid=0xq

Java.net . SocketInputStrean. socketReadlO (Native Method)

Java.net . SocketInputiStrean. read(SocketInputStream. Java: 150)

Java.net . SocketInputiStrean. read(SocketInputStream. Jjava: 1lZ1)

Java.l1o.BufferedInputStream. fill (BufferedInputStreamn. Java: £35)

Java.l1o.BufferedInputStream. read (BufferedInputStreamn. Java: £54)

locked <0xZ5565813=

(a jJava.i1o.BufferedInputStream)

Java.lo. FilterInputStream. read(FilterInputiStream. Jjava: 83)

sun.rml.tcransport . teop. TCPTransport _handleMessages (TCPTransport. J:

sun.rml.tcransport . tep. TCPTransporti ConnectionHandler. ruan0(TCPTrar

sun.rml.tcransport . tep. TCPTransportiConnectionHandler. run(TCPTr ans:

HOL6500 - Finding and Solving Java Deadlocks

It Can Even Detect A Java-level Deadlock

3 Java VisualVM
File Applications VYiew Tools Window Help

1“1 B3 R RE

'SAppIications @ x| Start Page x é com.intellij.rt.execution. application. AppMain (pid 256) x <][=])(O
E]@ L oo [overview | |4 Monitor | [Threads | 3 Sampler | (5) Profiler[== [threaddump] 12:04:37 PM "1
- e 4" VisualvM
< com.intellij.rt.execution.application.AppMain (pid 256)

_—— " | Thread Dum
- eefge [threaddump ! -
P i o JNI global references: 140 A |
& org.jetbrains.ide: —
- 4@f Remote
!
""" Snapshots Found one Java-level deadlock:

"pool-l-thread-5":
waiting for ownable synchronizer 0xZ2545Z4c0, (a java.util.concurrent.locks.Re
which is held by "pool-l-thread-1"

"pool-l-thread-1":
waiting for ownable synchronizer 0xZ2545Zbc8, (a jJava.util.concurrent.locks.Re
which is held by "pool-l-thread-2zZ"

"pool-l-thread-2":
waiting for ownable synchronizer 0xZ2545Zal8, (a jJava.util.concurrent.locks.Re
which is held by "pool-l-thread-3"

"pool-l-thread-3":
waiting for ownable synchronizer 0xZ545Z868, (a java.util.concurrent.locks.Reji|
which is held by "pool-l-thread-4"

"pool-l-thread-4":
waiting for owvnable synchronizer 0xZ545Z6b8, (a java.util.concurrent.locks.Re
which is held by "pool-l-thread-5"

paasasay sybiy |1y ‘Zange)] zuisH Z10Z O

Javaspecialists.eu

Java stack information for the threads listed above: v |

£ i | B

< [T | 2

NS 4 x

|
visualyM
<l nknown Applic

om.intellij.rk.exe

=r=| [threaddump
org.jetbrains.ides
ote

shots

 Start Page x T é com.intellij.rt.execution. application. AppMain (pid 256) x‘

] Overview ” Monitor H =| Threads H £33 Sampler “ ™) Profiler[=

£

[threaddump] 12:04:37 PM x]

-~ com.intellij.rt.execution.application.AppMain (pid 256)

Thread Dump
JNI global references: 140

Found one Java-lewvel deadlock:

"pool-l-thread-5":

walting for owmable synchronizer 0xzZ545Z4c0,

which 1s held by "pool-l-thread-1"
"pool-l-thread-1":

walting for owmable synchronizer 0xZ545Zbco,

which 1s held by "pool-l-thread-Z"
"pool-l-thread-Z":

walting for owmable synchronizer 0xzZ545Zals,

which 1s held by "pool-l-thread-3"
"pool-l-thread-3":

walting for owmable synchronizer O0xZ545Z868,

vvlnm mla o &= Toam=m V1 Al laey g 1 VT =l gpr m - AN

(a java.

(a jJava.

(a jJjava.

(a java.

util.

util.

util.

util.

concurrent.

concurrent.

concurrent.

concurrent.

loc]

loc]

loc]

loc]

46

Ny -
S e~
£ S S
- | T
i v -
n',“‘ ¢

T
xercise

<’
2

e

=
g

| résolution by global ordering

pansasay syby Iy ‘zanqe)y zuieH Z10Z O

.Jovqgggglgfl‘ll%tg.eu

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

®

Java

HOL6500 - Finding and Solving Java Deadlocks

Lab1 Exercise Lab1/readme.txt

—Go to DeadlockLabJavaOne2012/lab1 directory

—Run Main class to trigger deadlock (run.bat)
* You might need a few runs

—Capture a stack trace with JVisualVM
—Verify the deadlock involves the left and right locks

—Now it is time to look at the source code
* Source code is at src/main/javal/eul/javaspecialists/deadlock/lab1

—Define a global ordering for the locks that would prevent deadlock
 We are synchronizing on the Krasi objects

* Define a global ordering for Krasi objects by implementing Comparable and providing
a unique number to sort on (Krasi.java)

 Change the code to use the global ordering (Thinker.java)

—Verify that the deadlock has now disappeared

paasasay sybIy Iy ‘Z3nge)] zuisH Z1L0Z O

HOLG6500 - Finding and Solving Java Deadlocks

Lab1 Exercise Solution Explanation

®Goal: Prevent all philosophers from holding a single cup

paalasay sybiy |1y ‘Zzanqey] zuisH ZL0Z ©

Javaspecialists.eu

HOL6500 - Finding and Solving Java Deadlocks

Lab1 Exercise Solution Explanation

®Goal: Prevent all philosophers from holding a single cup ®

N

=

Thinker |Cup1 |Cup 2 Thinker |Cup1 |Cup 2 -

right left big small %

- 1 1 2 1 2 1 S
o e
® 2 2 3 B (2 3 2 R
=z >
= 3 3 4 3 4 3 <
9
> 4 4 5 4 4 T
§ 5 5 1 5 1 2
A\

: :
S o
Q.

®The set of first cups is 2,3,4,5

—This means that at most four philosophers can hold a single cup!

50

- bt 4)
; ‘(‘ ~
| 3 -’
4 X ¢ —
. 07 .' “__-

Fw

pol IR

Resolution By
Lock

— Avoiding Liveness Hazards

pansasay syby Iy ‘zanqe)y zuieH Z10Z O

.Jc:vc:.g.)ge«;;r <:g;nllsts eu

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

HOL6500 - Finding and Solving Java Deadlocks

Lab 2: Deadlock Resolution By TryLock

®Same problem as in Lab 1
®But our solution will be different

®Instead of a global order on the locks

—We lock the first lock

—We then try to lock the second lock
* If we can lock it, we start drinking
* If we cannot, we back out completely and try again
—What about starvation or livelock?

paalsasay sIybiy |1y ‘Zngey] zuisH Z1L0Z O

Jovosd“qcloll:ts.ou

HOL6500 - Finding and Solving Java Deadlocks

Lock And ReentrantLock

®The Lock interface offers different ways of locking: ®

N

—Unconditional, polled, timed and interruptible 5

T

public interface Lock { =
void Tock() =

3 vold lockInterruptibly() throws InterruptedException; -~
-

- boolean trylLock(); <
g boolean trylLock(long timeout, TimeUnit unit) >
o throws InterruptedException; -
S . Y
o void unlock(); =
. Condition newCondition(); g
o B @
> . . S . 2
"1 ®Lock implementations must have same memory-visibility semantics as o

intrinsic locks (synchronized)

HOL6500 - Finding and Solving Java Deadlocks

ReentrantLock Implementation

®Like synchronized, it offers reentrant locking semantics

®Also, we can interrupt threads that are waiting for locks

—Actually, the ReentrantLock never causes the thread to be BLOCKED, but always
WAITING

—If we try to acquire a lock unconditionally, interrupting the thread will simply go back
into the WAITING state

* Once the lock has been granted, the thread interrupts itself

paAsasay siybiy |1y ‘Zanqey] zuisH Z1L0Z @

Jovasp}cloum.ou

HOL6500 - Finding and Solving Java Deadlocks

Using The Explicit Lock

®We have to call unlock() in a finally block

—Every time, without exception

—There are FindBugs detectors that will look for forgotten "unlocks"

@
S
X
)
N
2 private final Lock Tock = new ReentrantLock(); g
@ public void update() { §
= Tock.lock(); // this should be before try =
4 try { g_
§ // update object state =
e // catch exceptions and restore 2
o // invariants 1f necessary o
o } finally { :
Tock.unlock(); h

}

HOL6500 - Finding and Solving Java Deadlocks

Polled Lock Acquisition

®Instead of unconditional lock, we can tryLock()

— if (Tock.tryLock()) {

try {
balance = balance + amount;

} finally {
lTock.unlock();
}
} else {
// alternative path

¥

paalasay sybiy |1y ‘Zzanqey] zuisH ZL0Z ©

Javasp'qclallsts.ou

Jovosdb\clonm.ou

HOL6500 - Finding and Solving Java Deadlocks

Using Try-Lock To Avoid Deadlocks

®Deadlocks happen when we lock multiple locks in different orders

®We can avoid this by using tryLock()

—If we do not get lock, sleep for a random time and then try again

—Must release all held locks, or our deadlocks become livelocks

®This is possible with synchronized, see my newsletter

—http:/lwww.javaspecialists.eu/archive/lssue194.html

paAsasay siybiy |1y ‘Zanqey] zuisH Z1L0Z @

HOL6500 - Finding and Solving Java Deadlocks

Using TryLock() To Avoid Deadlocks

public void drink() {

while (true) { Cg

— right.lock(); 5
try { —

if (left.tryLock()) { %

try { N

-} // now we can finally drink and then return &

) return; g

8 } finally { N
= left.unlockQ; =
S } 2
‘N } %

a } finally { @
» right.unlock(); -

> I s

2 // sleep for a random time i

HOLG6500 - Finding and Solving Java Deadlocks

Deadlock Is Prevented In This Design

O

&) &)

()

pansasay sIYbIY IV ‘ZIngey] zuisH Z1L0Z ©

Javaspecialists.eu

(&)

HOLG6500 - Finding and Solving Java Deadlocks

Philosopher 5 Wants To Drink, Takes Right Cup

)

&)
(2)

.'

(&)

pansasay sIYbIY IV ‘ZIngey] zuisH Z1L0Z ©

Javaspecialists.eu

HOLG6500 - Finding and Solving Java Deadlocks

Philosopher 1 Wants To Drink, Takes Right Cup

&)
()

.'

(&)

pansasay sIYbIY IV ‘ZIngey] zuisH Z1L0Z ©

Javaspecialists.eu

HOLG6500 - Finding and Solving Java Deadlocks

Philosopher 2 Wants To Drink, Takes Right Cup

pansasay sIYbIY IV ‘ZIngey] zuisH Z1L0Z ©

Javaspecialists.eu

HOLG6500 - Finding and Solving Java Deadlocks

Philosopher 3 Wants To Drink, Takes Right Cup

pansasay sIYbIY IV ‘ZIngey] zuisH Z1L0Z ©

Javaspecialists.eu

HOLG6500 - Finding and Solving Java Deadlocks

Philosopher 4 Wants To Drink, Takes Right Cup

pansasay sIYbIY IV ‘ZIngey] zuisH Z1L0Z ©

Javaspecialists.eu

HOLG6500 - Finding and Solving Java Deadlocks

Philosopher 4 Tries To Lock Left, Not Available

pansasay sIYbIY IV ‘ZIngey] zuisH Z1L0Z ©

Javaspecialists.eu

HOLG6500 - Finding and Solving Java Deadlocks

Philosopher 4 Unlocks Right Again

®Now Philosopher 3 can
| drink °

I |

(&)

pansasay sybiy |y ‘Zznqey] zuisH Z10Z @

Javaspecialists.eu

66

-\.o) - J\

A \‘ b ‘ .
‘ . »- - - "
""‘)
. T
: | C
B, |
Yee f M
c:"‘ ‘
ey

xercise

, resolution by trylLock

pansasay syby Iy ‘zanqe)y zuieH Z10Z O

.Jovqgggglgfl‘ll%tg.eu

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

HOL6500 - Finding and Solving Java Deadlocks

Lab2 Exercise Lab2/readme.txt

—Run Main class to trigger deadlock
* You might need a few runs

—Capture a stack trace with JVisualVM
—Verify the deadlock involves the left and right locks

—Use Lock.tryLock() to avoid blocking on the inner lock (forever)
* lock the right
* tryLock the left
—if success, then drink and unlock both
—otherwise, unlock right and retry
 Change the Thinker.java file

—Verify that the deadlock has now disappeared

paAsasay siybiy |1y ‘Zanqey] zuisH Z1L0Z @

Jovosdb\clonm.ou

HOLG6500 - Finding and Solving Java Deadlocks

Lab2 Exercise Solution Explanation

®Goal: Prevent all philosophers from forever blocking on the second cup

| —Aphilosopher should not die of thirst
* We need to avoid livelocks
 lock/tryLock vs. tryLock/tryLock

paalasay sybiy |1y ‘Zzanqey] zuisH ZL0Z ©

Jovasdqclaum.ou

69

‘ 4-*!

Resource Deadlock

.

— Avoiding Liveness Hazards

|
pansasay syby Iy ‘zanqe)y zuieH Z10Z O

.Jovaggeg gnllsts eu

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

cialists.eu

Java

HOL6500 - Finding and Solving Java Deadlocks

Lab 3: Resource Deadlock

®Problem: threads are blocked waiting for a finite resource that never
becomes available

®Examples:

—Resources not being released after use
* Running out of threads
 Java Semaphores not being released

—JDBC transactions getting stuck

—Bounded queues or thread pools getting jammed up

®Challenge:

paAlasay siybiy 1Y ‘Zinqey] zuisH Z1L0Z @

—Does not show up as a Java thread deadlock
—Problem thread could be in any state: RUNNING, WAITING, BLOCKED

cialists.eu

Java

HOL6500 - Finding and Solving Java Deadlocks

How To Solve Resource Deadlocks

® Approach: If you can reproduce the resource deadlock
—Take a thread snapshot shortly before the deadlock

—Take another snapshot after the deadlock

—Compare the two snapshots

® Approach: If you are already deadlocked

—Take a few thread snapshots and look for threads that do not move

@It is useful to identify the resource that is being exhausted

— A good trick is via phantom references (beyond scope of this lab)

paAlasay siybiy 1Y ‘Zinqey] zuisH Z1L0Z @

HOL6500 - Finding and Solving Java Deadlocks

Resource Deadlocks

®We can also cause deadlocks waiting for resources

®For example, say you have two DB connection pools

—Some tasks might require connections to both databases

—Thus thread A might hold semaphore for D1 and wait for D2, whereas thread B might
hold semaphore for D2 and be waiting for D1

®Thread dump and ThreadMXBean does not show this as a deadlock!

paAsasay siybiy |1y ‘Zanqey] zuisH Z1L0Z @

Jovasp}cloum.ou

HOL6500 - Finding and Solving Java Deadlocks

Our DatabasePool - Connect() And Disconnect()

public class DatabasePool {
private final Semaphore connections;
public DatabasePool (1nt connections) {
this.connections = new Semaphore(connections);
h

public void connect() {
connections.acquireUninterruptibly(Q;
System.out.printlin("'DatabasePool.connect");

¥

public void disconnect() {
System.out.printin('DatabasePool.disconnect”);
connections.release();

paAsasay siybiy |1y ‘Zanqey] zuisH Z1L0Z @

Jovosd‘q_coonm.ou

¥

Javaspecialists.eu

HOLG6500 - Finding and Solving Java Deadlocks

ThreadMXBean Does Not Detect This Deadlock

DatabasePool.connect
DatabasePool.connect

Reference Handler

Finalizer

Signal Dispatcher

Monitor Ctrl-Break

Thread-1

DestroyJavaVM

Attach Listener

RMI TCP Accept-0

RMI Scheduler(0)

JMX server connection timeout
RMI TCP Connection(2)-192.16/*

g

' Name: Thread-0

| Threads |

State: WAITING on java.util.concurrent.Semaphore$SNonfairSync@32089335
Total blocked: 0 Total waited: 2

Stack trace:

sun.misc.Unsafe.park(Native Method)
_Java. util.concurrent.locks.LockSupport.park(LockSupport.java:186)
" java.util.concurrent.locks.AbstractQueuedSynchronizer.park AndCheckInterrupt(AbstractQueuedSynchronizer.java:834)
java.util.concurrent.locks.AbstractQueuedSynchronizer.doAcquireShared(AbstractQueuedSynchronizer.java:964)
java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireShared(AbstractQueuedSynchronizer.java:1282)
java.util.concurrent.Semaphore.acquireUninterruptibly(Semaphore.java:340)
eu.javaspecialists.course.concurrency.ch1l0_avoiding_liveness_hazards.DatabasePool.connect(DatabasePool.java:12)
eu.javaspecialists.course.concurrency.ch10_avoiding_liveness_hazards.DatabasePoolTestS 1.run(DatabasePoolTest.java:12)

Filter

Detect Deadlock No deadlock detected

paalasay sybiy |1y ‘Zzanqey] zuisH ZL0Z ©

HOL6500 - Finding and Solving Java Deadlocks

ThreadMXBean Does Not Detect This Deadlock

DatabasePool.connect
1 DatabasePool.connect

| Threads |

Reference Handler ~ Name: Thread-0
Finalizer State: WAITING on java.util.concurrent.Semaphore$NonfairSync@32089335
Signal Dispatcher Total blocked: 0 Total waited: 2

Monitor Ctrl-Break

Thread-0 Stack trace:

Thread-1 sun.misc.Unsafe.park(Native Method)

java.util.concurrent.locks.LockSupport.park(LockSupport.java:186)
" java.util.concurrent.locks.AbstractQueuedSynchronizer.park AndCheckInterrupt(AbstractQueuedSynchronizer.java:834)
RMI TCP Accept-0 java.util.concurrent.locks.AbstractQueuedSynchronizer.doAcquireShared(AbstractQueuedSynchronizer.java:964)
RMI Scheduler(0) java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireShared(AbstractQueuedSynchronizer.java:1282)

o java.util.concurrent.Semaphore.acquireUninterruptibly(Semaphore.java:340)

JMX server conne.cnon UMIEOE . eu.javaspecialists.course.concurrency.ch10_avoiding_liveness_hazards.DatabasePool.connect(DatabasePool.java:12)
RMITCP Connection(2)-192.16— o javaspecialists.course.concurrency.ch10_avoiding_liveness_hazards.DatabasePoolTest$ 1.run(DatabasePoolTest.java:12)

v
[P
Filter ‘ Detect Deadlock No deadlock detected

DestroyJavaVM
Attach Listener

paalasay sybiy |1y ‘Zzanqey] zuisH ZL0Z ©

Jovoquclollsts.ou

Detect Deadlock

HOLG6500 - Finding and Solving Java Deadlocks

Stack Trace Gives A Vector Into The Code

locks.AbstractQueuedSynchronizer.doAcquireShared(AbstractQueuedSynchronizer.java:964)
locks.AbstractQueuedSynchronizer.acquireShared(AbstractQueuedSynchronizer.java:1282)
Semaphore.acquireUninterruptibly(Semaphore.java:340)
yurse.concurrency.chl0_avoiding_liveness_hazards.DatabasePool.connect(DatabasePool.java:12)

public class DatabasePool {

/] ...

public void connect() {

connections.acquireUninterruptibly(); // line 12
System.out.println("DatabasePool.connect");

¥

—

paalasay sybiy |1y ‘Zzanqey] zuisH ZL0Z ©

Jovosdqclaum.w

/76

.,°.) . —_——
-

i
-
-

81 b

xercise

-
T

L
- ---.
-

~ Resource Deadlock

pansasay syby Iy ‘zanqe)y zuieH Z10Z O

.Jovqgggglgfl‘ll%tg.eu

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

HOL6500 - Finding and Solving Java Deadlocks

Lab3 Exercise Lab3/readme.txt

—Start our modified Java2zDemo 800 s 20 e

] [map | Arcs_Curves Colors | Composite | Images = Lines | Mix = Pamt | Pahs | Transforms |

- CO n n eCt JVIS u a IVM | nop | add sub xor int pear | Objects | Clipl | Clip2 Clip3 #G[%,l:\al '.c,antmIs;
and dump all threads S

- ~J | == S:een |

—Use Java2Demo for a while —_— LK
i)—

until it deadlocks || N []ebes

—Get another thread dump and
compare to the first one

* This should show you where
the problem is inside your code

—Fix the problem and verify that it has been solved
* Hint: Your colleagues probably write code like this, but you shouldn't

paAsasay siybiy |1y ‘Zanqey] zuisH Z1L0Z @

Jovosd‘q_coonm.ou

"'mo“

s
8

HOLG6500 - Finding and Solving Java Deadlocks

Lab3 Exercise Solution Explanation

®Goal: Ensure that resources are released after use

®Diff between the two thread dumps using jps and jstack

< at java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.await(AbstractQueuedSynchronizer.java:2043)
< at java.awt.EventQueue.getNextEvent(EventQueue.java:531)
< at java.awt.EventDispatch Thread.pumpOneEventForFilters(EventDispatch Thread.java:213)

> at
> at
> at
> at

—Most likely the fault will be in one of our classes, rather than the JDK

lava.uti

-

jlava.uti

-

lava.uti

-

lava.uti

-

.concurrent.
.concurrent.
.concurrent.

.concurrent.Semaphore.acquire(Semaphore.java:317)

> at eu.javaspecialists.deadlock.lab3.java2d.MemoryManager.gc(MemoryManager.java:56)
> at eu.javaspecialists.deadlock.lab3.java2d.MemoryMonitor$Surface.paint(MemoryMonitor.java: 153)

ocks.AbstractQueuedSync
ocks.AbstractQueuedSync
ocks.AbstractQueuedSync

nronizer.parkAndCheckInterrupt(AbstractQueuedSynchronizer.java:834)
nronizer.doAcquireSharedIinterruptibly(AbstractQueuedSynchronizer.java:994)

nronizer.acquireSharedIinterruptibly(AbstractQueuedSynchronizer.java: 1303)

paasasay sybiy |1y ‘Zangey] zuidH Z1L0Z ©®

HOLG6500 - Finding and Solving Java Deadlocks

What Is Wrong With This Code?

/:’: 5
* Only allow a maximum of 30 threads to call System.gc() at a time.
o 7':/
public class MemoryManager extends Semaphore {
private static final int MAXIMUM_NUMBER_OF_CONCURRENT_GC_CALLS = 30;

public MemoryManager() {
super (MAXIMUM_NUMBER_OF_CONCURRENT_GC_CALLS);

} catch (Exception ex) {
// 1gnore the InterruptedException

paalasay sybiy |1y ‘Zzanqey] zuisH ZL0Z ©

< B

®

w public void gc() {
~—

» try {

-— acquire();

O try {

T System.gc();

_31{” } finally {

' System.out.printin("System.gc() called");
w release();
O }
>
O
q

¥
¥

HOLG6500 - Finding and Solving Java Deadlocks

What Is Wrong With This Code?

/:’:7’:
* Only allow a maximum of 30 threads to call System.gc() at a time. g
e 7':/ (s
public class MemoryManager extends Semaphore { X
private static final int MAXIMUM_NUMBER_OF_CONCURRENT_GC_CALLS = 30; g:
public MemoryManager() { E
- super (MAXIMUM_NUMBER_OF_CONCURRENT_GC_CALLS); =
} Q
o c
w public void gc() { ﬁ

~—
» try { >
- acquire(); . . =
O tr Calling System.gc() 1s baddd (but not the problem) X
$ e i :
a } Te o
' System.out.println("'System.gc() called"); o
w release(); ®
s } :
} catch (Exception ex) { ;D
2 // 1gnore the InterruptedException Q.
}
}

}

HOLG6500 - Finding and Solving Java Deadlocks

What Is Wrong With This Code?

/:’: 5
* Only allow a maximum of 30 threads to call System.gc() at a time.
7':/

public class MemoryManager extends Semaphore {
private static final int MAXIMUM_NUMBER_OF_CONCURRENT_GC_CALLS = 30;

public MemoryManager() {
super (MAXIMUM_NUMBER_OF_CONCURRENT_GC_CALLS);
}

public void gc() {

try {
acquire();

h Calling System.gc() 1s baddd (but not the problem)
a0 ORI,

System.out.println("System.gc() called");
release();

} catch (Exception ex) {
// 1gnore the InterruptedException

paAsasay sIybIy |1y ‘Zangey] zuieH Z1L0Z O

®
:
o
8
s
L,

Empty catch block hides problem

e

80

~Avoiding Liveness Hazards

.Javqggce'glaqu‘llﬂg.eu

pansasay syby v ‘zanqey zuieH Z10Z O

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

HOL6500 - Finding and Solving Java Deadlocks

Conclusion On Deadlocks

@ Concurrency is difficult, but there are tools and techniques that we can
use to solve problems

®These are just a few that we use

®For more information, have a look at

—The Java Specialists' Newsletter - http://www.javaspecialists.eu

®We have helped a lot of companies by training their Java programmers

cialists.eu

—Java Concurrency

—Java Performance Tuning

paAlasay siybiy 1Y ‘Zinqey] zuisH Z1L0Z @

—Java Design Patterns

Javasg

—Advanced Java Techniques (Java NIO, threading, data structs, etc.

HOLG6500 - Finding and Solving Java Deadlocks

And One More Thing

®We have prepared a fourth lab for you to do at home

—Either take it along with a memory stick or get it from
e https:/Igithub.com/kabutz/DeadlockLabJavaOne2012.git

—Send questions and comments to heinz@kabutz.net

paAsasay sIybIy |1y ‘Zangey] zuieH Z1L0Z O

Jovosb"qciallsts.ou

83

= heinz@kabUtZ.net

.Javqggce'glaqu‘llﬂg.eu

pansasay syby v ‘zanqey zuieH Z10Z O

https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500
https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=6500

